
Algorithmique et structures de données
Bonnes pratiques de programmation en C++

Julien Hauret
Lundi 23 janvier 2022

Bien travailler en C++

Compiler souvent
• Compiler permet de s’assurer qu’il n’y a pas d’erreur de type
(exemple : std::string au lieu d’un float)

• Compiler permet de s’assurer qu’il n’y a pas d’erreur de syntaxe
(exemple : oubli d’un ;)

• Compiler permet de lever des avertissements : variables déclarées
mais non utilisées, transtypages douteux, etc.

Dans son environnement de développement
QtCreator et VisualStudio permettent de compiler en un clic.
Abusez-en.

Sous QtCreator : Ctrl + B pour compiler.

1/6

Style de programmation

Accolades
Choisir un style et s’y tenir.

Objectif : lisibilité et cohérence.

// Style K&R
void a_function(int x, int y){

if (x == y) {
something1();
something2();

} else {
somethingelse1();
somethingelse2();

}
finalthing();

}

// Style Allman
void a_function(int x, int y)
{

if (x == y)
{

something1();
something2();

}
else
{

somethingelse1();
somethingelse2();

}
finalthing();

}
2/6

Style de programmation

Noms de fonctions, variables, classes
On préférera utiliser la CamelCase pour les classes et la snake_case

pour tout le reste. Choisir une seule langue entre anglais et français.

Exemple
class Cluster {

private:
int r, g, b;
int nb_points;

public:
get_average_color();

};

Color Cluster::get_average_color(){
return Color(r,g,b);

}

3/6

Style de programmation

Écrire du code clair et concis
Éviter les parenthèses superflues, les variables inutiles, les lignes à
rallonge… Pensez à la personne qui va relire !

// NON ! Code peu élégant
bool Cluster::operator==(Cluster C){

bool est_egal=true;
if (n!=C.n || r!=C.r ||

g!=C.g || b!=C.b){
est_egal=false;

}
return est_egal;

}

// Version plus claire
bool Cluster::operator==(Cluster C){

bool egal = n == C.n &&
r == C.r &&
g == C.g &&
b == C.b;

return egal;
}

// On peut même directement écrire
bool Cluster::operator==(Cluster C){

return (n == C.n && r == C.r &&
g == C.g && b == C.b);

} 4/6

Style de programmation

Indentation
Chaque bloc doit être indenté et si possible mis en valeur par des
accolades.

// NON
double maximum(double x, double y){
double res;
if (x>y)
res=x;
else

res=y;
return y;}

// Oui
double maximum(double x, double y){

if (x > y) {
return x;

} else {
return y;

}
}

5/6

Style de programmation

Écrire du code lisible

• Indentation correcte (pas de bloc mal indenté)
• Noms de variables et de fonctions clairs
• Du code commenté

bool Vector::nul const (){
if (size()==0)

return (true);
int n = size();
int res = 0;
for(int i=0; i<n; i++){

res = (res + tab[i]);
}
if (res == 0)

return true;
return false;

}

// Détermine si la somme du vecteur = 0
// Ne modifie pas le vecteur
bool Vector::somme_nulle() const {
// On vérifie que le vecteur a une
// taille > 0 pour accéder aux valeurs
int taille = size();
if taille == 0

return true;
int somme = 0;
// Calcul de la somme des éléments
for(int i=0; i<taille; i++)

somme += tab[i];
return (somme == 0);

}
6/6

