Algorithmique et structures de donnees

Complexité et structures de données

Julien Hauret
Lundi 23 janvier 2022

Acces aux ressources du cours

Liens utiles

- Site du cours: http://imagine.enpc.fr/~monasse/Algo
- Slides: https://jhauret.github.io/teaching/
- Email: julien.hauret@lecnam.net

1/45

http://imagine.enpc.fr/~monasse/Algo
https://jhauret.github.io/teaching/
mailto:julien.hauret@lecnam.net

Plan de la séance

Qu'est-ce que l'algorithmique?

2/45

Pourquoi ce cours?

Introduction a la programmation C++
Apprendre a manipuler le CG++ comme outil.

- Savoir programmer.
- Concevoir un logiciel.

- Tester et compiler.

3/45

Pourquoi ce cours?

Introduction a la programmation C++
Apprendre a manipuler le CG++ comme outil.

- Savoir programmer.
- Concevoir un logiciel.

- Tester et compiler.

Algorithmique
Apprendre l'informatique comme discipline scientifique.

- Qu'est-ce qu’'un algorithme? Un bon algorithme?
- Comment évaluer et comparer différents algorithmes?
- Quels sont les algorithmes classiques pour mon probléme?

3/45

Algorithme

Qu’est-ce qu’un algorithme?

Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.

445

Algorithme

Qu’est-ce qu’un algorithme?

Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.

Propriétés d'un algorithme

Un algorithme est une procédure répétable (par un humain) :

- finie = réalisable en temps borné,

445

Algorithme

Qu’est-ce qu’un algorithme?

Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.

Propriétés d'un algorithme

Un algorithme est une procédure répétable (par un humain) :

- finie = réalisable en temps borné,

- non-ambigtie = bien définie,

445

Algorithme

Qu’est-ce qu’un algorithme?

Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.

Propriétés d'un algorithme

Un algorithme est une procédure répétable (par un humain) :

- finie = réalisable en temps borné,
- non-ambiglie = bien définie,

- travaillant sur des entrées spécifiées,

445

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.
Propriétés d'un algorithme
Un algorithme est une procédure répétable (par un humain) :
- finie = réalisable en temps borné,
- non-ambiglie = bien définie,
- travaillant sur des entrées spécifiées,

- éventuellement produisant des sorties.

445

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.
Propriétés d'un algorithme
Un algorithme est une procédure répétable (par un humain) :
- finie = réalisable en temps borné,
- non-ambiglie = bien définie,
- travaillant sur des entrées spécifiées,

- éventuellement produisant des sorties.

445

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’'opérations permettant
d’obtenir un résultat a partir d’'entrées connues.
Propriétés d'un algorithme
Un algorithme est une procédure répétable (par un humain) :
- finie = réalisable en temps borné,
- non-ambigtie = bien définie,
- travaillant sur des entrées spécifiées,

- éventuellement produisant des sorties.

Ces regles suffisent a formaliser correctement la calculabilité.

445

Plan de la séance

Complexité

Notion de complexité

5/45

Notion de complexité

Définition

La complexité d'un algorithme est une estimation du nombre
d’opérations atomiques nécessaires a son exécution en fonction des
parameétres caractéristiques du probléeme.

Opération de base qui prend toujours le méme temps a s'exécuter :
multiplication, addition, acces a une case d'un tableau, etc.

Remarque

La complexité représente le comportement asymptotique de
l'algorithme (lorsque les dimensions des entrées deviennent trés
grandes).

6/45

Notion de complexité

Les types de complexité

- La complexité en temps : le nombre d’opérations élémentaires
constituant l'algorithme.

- La complexité en espace : le nombre de cases mémoires
élémentaires occupées lors du déroulement de l'algorithme.

On s'intéresse généralement a la complexité dans le pire des cas et,
plus rarement, a la complexité en moyenne.

7/45

Notion de complexité

Remarques

- La complexité en espace et en temps sont complémentaires :

- stocker tous les résultats = évite le recalcul, nécessite beaucoup
de mémoire.

- calculer a la demande = calculs redondants, peu de mémoire
nécessaire.
- En géneéral, la complexité en espace n’est pas un probléeme et c'est

le temps qui importe (par exemple, pour des applications temps
réel).

8/45

Histogramme d’une image W x H : version rapide

// 0On stocke les 256 valeurs de 1'histogramme

int histo[256];

// Initialisation a 0

for(int i=0; i<256; i++){
histo[i] = 0;

}

// Parcours de 1'image par colonne

for(int x=0; x<image.width(); x++){
for(int y=0; y<image.height(); y++){

histo[image(x,y)]++;

}

}

// Affichage de 1'histogramme

for(int 1i=0; i<256; i++){
drawRect(i,0,1,histo[i])

}

Opération de base : accés a une case d’'un tableau.
9/45

Histogramme d’une image W x H : version rapide

// 0On stocke les 256 valeurs de 1'histogramme

int histo[256];

// Initialisation a 0

for(int i=0; i<256; i++){
histo[i] = 0;

} - .

// Parcours de 1'image par colonne Memoire :

for(int x=0; x<image.width(); x++){ 1 tableau de 256 cases
for(int y=0; y<image.height(); y++){

histo[image(x,y)]++; Temps:

} W x H pixels visites

Complexités

}

// Affichage de 1'histogramme

for(int 1i=0; i<256; i++){
drawRect(i,0,1,histo[i])

}

Opération de base : accés a une case d’'un tableau.
9/45

Histogramme d’une image W x H : version lente

for(int i=0; i<256; i++){
// Valeur i de 1'histogramme
int h = 0;
// Parcours de 1'image
for(int x=0; x<image.width(); x++){
for(int y=0; y<image.height(); y++){
if(image(x,y) == c){
h++;
}
}
}
drawRect(c,0,1,h);

10/45

Histogramme d’une image W x H : version lente

for(int i=0; i<256; i++){
// Valeur i de 1'histogramme
int h = 0;
// Parcours de 1'image
for(int x=0; x<image.width(); x++){
for(int y=0; y<image.height(); y++){
if(image(x,y) == c){
h++;
}
}
}
drawRect(c,0,1,h);

Complexités
Mémoire :

Pas de tableau
Temps :

256 passages sur
chaque pixel

— 256 x Wx H

10/45

Mesure de complexité

Bornes de complexité

Le nombre exact d’'opérations éléementaires constituant un algorithme
peut-étre complexe a déterminer. Pour plus de commodite, on
cherche une fonction f qui encadre celui-ci, c'est-a-dire :

Ja,feR/ a-f(N)<complexité<B-f(N) pour N— oo (1)
Notation
Par convention, on utilise la notation de Landau. On dit alors que

l'algorithme est en O(f(N)) avec N = {nq,ny,ns,...} sont les parametres
caractéristiques du probleme.

11/45

Exemple de mesure de complexité

Calcul de l'histogramme d’'une image :
- nombre de pixels N=WxH;
- nombre de couleurs c.
Histogramme rapide
- Espace : O(c)
- Temps : O(W x H)

Histogramme lent
- Espace: O(1)
- Temps : O(Wx H xc)

12/45

Notion de complexité : exemples simples

Opération de base : accés a une case d'un tableau.
Parameétre caractéristique : n la longueur du tableau.

Parcours des élements d’un tableau

// Utilisation d'un tableau type vector
// Tableau de taille n
for(int i=0; i<tab.size(); i++){

cout << tab[i] << endl;

}

Chaque case est accédée une et une seule fois

13/45

Notion de complexité : exemples simples

Opération de base : accés a une case d'un tableau.
Parameétre caractéristique : n la longueur du tableau.

Parcours des élements d’un tableau

// Utilisation d'un tableau type vector
// Tableau de taille n
for(int i=0; i<tab.size(); i++){

cout << tab[i] << endl;

}

Chaque case est accedée une et une seule fois — complexité O(n).

13/45

Notion de complexité : exemples simples

Opération de base : accés a une case d'un tableau.
Parameétre caractéristique : n la longueur du tableau.
Recherche (naive) de l'unicité des éléments dans un tableau

// Unicité dans tab
vector<bool> unique(tab.size(), false);
for(int i=0; i<tab.size(); i++){
for(int j=i+1; j<tab.size(); j++){
if(tab[i]==tab[j]){
unique[i] = unique[j] = true;
}
}
}

Deux parcours du tableau imbriqués

14/45

Notion de complexité : exemples simples

Opération de base : accés a une case d'un tableau.
Parameétre caractéristique : n la longueur du tableau.
Recherche (naive) de l'unicité des éléments dans un tableau

// Unicité dans tab
vector<bool> unique(tab.size(), false);
for(int i=0; i<tab.size(); i++){
for(int j=i+1; j<tab.size(); j++){
if(tab[i]==tab[j]){
unique[i] = unique[j] = true;
}
}
}

Deux parcours du tableau imbriqués — complexité O(n?).

14/45

Suite de Fibonacci

Définition
Fo=0
Fi=1

Fo=Fo1+Fn—a, ¥YN=2

15/45

Exemple : le ne terme de la suite de Fibonacci

Algorithme récursif (naif)

int fibonacci(int n) {
if (n<=1) {
return n;

}

return fibonacci(n - 1) + fibonacci(n - 2);

16/45

Exemple : le ne terme de la suite de Fibonacci

Algorithme récursif (naif)

int fibonacci(int n) {
if (n<=1) {
return n;
}

return fibonacci(n - 1) + fibonacci(n - 2);

145"

Complexite O(=2).

S

16/45

Exemple : le ne terme de la suite de Fibonacci

Differentes implémentations d’'un méme calcul peuvent avoir des
complexités differentes!

Peu de mémoire Peu de temps
// Calcul a la volée // Pré-calcul
int fibonacci(int n){ vector<int> fibo(10000000,0);
int prec = 1, int p_prec = 0; fibo[1] = 1;
int resultat; for(int i=2; i<fibo.size(); i++){
for(int i=0; i<n; i++){ fibo[i] = fibo[i-1] +
resultat = prec + p_prec; fibo[i-2];
p_prec = prec; }
prec = resultat; // Utilisation
} int fibonacci(int n){
return resultat; return fibo[n];
} }

17/45

Exemple : le ne terme de la suite de Fibonacci

Differentes implémentations d’'un méme calcul peuvent avoir des
complexités differentes!

Peu de mémoire Peu de temps
// Calcul a la volée // Pré-calcul
int fibonacci(int n){ vector<int> fibo(10000000,0);
int prec = 1, int p_prec = 0; fibo[1] = 1;
int resultat; for(int i=2; i<fibo.size(); i++){
for(int i=0; i<n; i++){ fibo[i] = fibo[i-1] +
resultat = prec + p_prec; fibo[i-2];
p_prec = prec; }
prec = resultat; // Utilisation
} int fibonacci(int n){
return resultat; return fibo[n];
} }

Complexite O(n). 17/45

Exemple : le ne terme de la suite de Fibonacci

Differentes implémentations d’'un méme calcul peuvent avoir des

complexités differentes!

Peu de mémoire

// Calcul a la volée
int fibonacci(int n){
int prec = 1, int p_prec = 0;
int resultat;
for(int i=0; i<n; i++){
resultat = prec + p_prec;
p_prec = prec;
prec = resultat;
}

return resultat;

Complexite O(n).

Peu de temps

// Pré-calcul
vector<int> fibo(10000000,0);
fibo[1] = 1;
for(int i=2; i<fibo.size(); i++){
fibo[i] = fibo[i-1] +
fibo[i-2];
}
// Utilisation
int fibonacci(int n){
return fibo[n];

}

Complexité O(1) (en utilisation)w45

Les grandes classes de complexité

Ordres de grandeur de complexité (1/2)

- 0(1) : constant, pas d'influence des grandeurs du probléeme.
Exemple : acces a une case d’'un tableau, somme de deux constantes.

- O(log(n)) : logarithmique, algorithmes rapides, pas besoin de lire
toutes les donnees.
Exemple : rechercher un élement dans un tableau trié.

- O(n) : linéaire, proportionnel au nombre d’éléments.
Exemple : sommer tous les elements d’un tableau.

18/45

Les grandes classes de complexité

Ordres de grandeur de complexité (2/2)
- O(nlog(n)) : linéarithmique, de nombreux algorithmes “rapides”.
Exemple : tri optimal, transformée de Fourier rapide.

- 0(n®) : polynomiale, acceptable pour des données petites (faible
n) et des puissances faibles (petit k).
Exemple : tri naif ((0(n?)), multiplication matricielle (O(n)).

- 0(2") : exponentielle, utilisable en pratique seulement pour des
petites dimensions.

- O(n!) : factorielle, inutilisable des que n dépasse la dizaine.

19/45

Temps de calcul relatifs

En supposant qu'une opération élémentaire prend 10 ns, pour n =50 :

- 0(1):10 ns
- O(log(n)) : 20 ns
-+ O(n) : 500 ns
- O(nlog(n)) : 850 ns
- 0(n?) : 25 ps
- 0(2") : 130 jours (= 4 mois)
- 0(n!) : 10%® ans

20/45

Temps de calcul relatifs

En supposant qu'une opération élémentaire prend 10 ns, pour n =50 :

- 0(1):10 ns

- O(log(n)) : 20 ns

-+ O(n) : 500 ns

- O(nlog(n)) : 850 ns

- 0(n?) : 25 ps

- 0(2") : 130 jours (= 4 mois)

- 0(n!) : 10*® ans >>>14e” (age de l'univers)

20/45

Exemple : flouter une image

Floutage

// Flouter une image WxH sur un rayon r
for(int i=r/2; i<W-r/2; i++){
for(int j=r/2; j<H-r/2; j++){
newIm[i,j] = 0;
for(int k=i-r/2; k<i+r/2; k++){
for(int m=j-r/2; m<j+r/2; m++){
newIm[i,j] += im(k,m);
}
}
newIm[i,jl/= r=r;
}
}

21/45

Exemple : flouter une image

Floutage

// Flouter une image WxH sur un rayon r
for(int i=r/2; i<W-r/2; i++){
for(int j=r/2; j<H-r/2; j++){
newIm[i,j] = 0;
for(int k=i-r/2; k<i+r/2; k++){
for(int m=j-r/2; m<j+r/2; m++){
newIm[i,j] += im(k,m);
}
}
newIm[i,jl/= r=r;
}
}

— complexité O(W x H x r?)

21/45

Classes de complexité

P versus NP

Les problemes de classe P sont les probléemes pour lesquels un
algorithme de résolution en temps polynomial est connu.

Les autres problémes sont dits de classe NP si l'on connait seulement

un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

g Bad

22/45

Classes de complexité

P versus NP

Les problemes de classe P sont les probléemes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problémes sont dits de classe NP si l'on connait seulement

un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de probleme NP

, Un commercial doit parcourir N = {n,...,ng} villes
C‘S * séparées par les distances d;;. Quelle est le chemin

qui minimise la distance totale parcourue?

22/45

Classes de complexité

P versus NP

Les problemes de classe P sont les probléemes pour lesquels un
algorithme de résolution en temps polynomial est connu.

Les autres problémes sont dits de classe NP si l'on connait seulement
un algorithme polynomial permettant de veérifier une solution et
NP-difficile sinon.

Example de probleme NP

Un commercial doit parcourir N = {n,...,ng} villes
Cﬁ * séparées par les distances d;;. Quelle est le chemin
qui minimise la distance totale parcourue?
Approche naive : O(n!), meilleur algorithme exact connu : O(n?2").

22/45

Classes de complexité

P versus NP

Les problemes de classe P sont les probléemes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problémes sont dits de classe NP si l'on connait seulement

un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de probleme NP

Un commercial doit parcourir N = {n,...,ng} villes
Cﬁ * séparées par les distances d;;. Quelle est le chemin
qui minimise la distance totale parcourue?
Approche naive : O(n!), meilleur algorithme exact connu : O(n?2").

P=NP ou P# NP? (probléme du millénaire de l'Institut Clay) 22/45

Relativisons!

- Les complexités sont asymptotiques : elles sont valables pour les
grandes tailles de donneées.

- On omet genéralement les constantes multiplicatives dans la
notation O().

Exemple
- Algorithme A : 10% xn=0(n)
- Algorithme B : n> = 0(n?)
— L'algorithme A est plus rapide ssi n>10°0

23/45

Complexité en moyenne et dans le pire des cas

- Complexité moyenne : caractérise le comportement attendu pour
des répétitions sur des données aléatoires.

- Complexité dans le pire des cas : caractérise le comportement
dans la pire configuration des données.

Importance
Lapplication détermine le comportement important.

- Complexité moyenne : requétes dans un moteur de recherche,
traitement d'image.

- Complexité dans le pire des cas : applications critiques
(aéronautique, applications temps-réel...).

2445

Plan de la séance

Rappels sur les tableaux

25/45

Les tableaux en C++

Les tableaux en C++ sont de taille fixe. Elle peut étre déterminée soit :

- a la compilation (tableau statique),

- a l'exécution (tableau dynamique)

Les tableaux sont des structures difficiles @ manipuler (gestion de la
mémoire, pas de mécanisme de copie inexistant, etc.).

Pour simplifier
Il est plus facile d'utiliser les vecteurs (vector) de la STL.

26/45

Plan de la séance

Structures de données
Vecteurs
Piles, files et listes
Les itérateurs
Récapitulaif

Autres structures

27/45

Le vecteur

La classe

La classe est std::vector (Simplement vector Si on a utilisé

using namespace std)

Elle est « templatée », elle peut étre utilisée pour contenir n'importe
quel type de variable.

Avantages
- Pas de mémoire a gérer,;

- Taille du vecteur connue grace a la méthode .size() ;

- La taille n'a pas besoin d'étre connue dés le départ
(redimensionnable!).

28/45

Complexité de 'ajout d'un élément

Implémentation naive

Quand on ajoute un élément avec la fonction .push_back(), on
redimensionne le tableau avec taille plus grande d’une case.

Ceci implique une recopie du tableau a chaque .push_back .

29/45

Complexité de 'ajout d'un élément

Implémentation naive

Quand on ajoute un élément avec la fonction .push_back(), on
redimensionne le tableau avec taille plus grande d’une case.

Ceci implique une recopie du tableau a chaque .push_back .

Complexite
o(n)

29/45

Complexité de 'ajout d'un élément

Implémentation astucieuse
- La taille du vector ne correspond pas la taille du tableau alloué.

- Quand on atteint la taille maximale du tableau, on réalloue en
multipliant cette taille par un facteur m.

30/45

Complexité de 'ajout d'un élément

Implémentation astucieuse
- La taille du vector ne correspond pas la taille du tableau alloué.

- Quand on atteint la taille maximale du tableau, on réalloue en
multipliant cette taille par un facteur m.

Complexite
O(1) (en moyenne, O(n) quand la taille maximale est atteinte)

30/45

Complexité moyenne du push_back : preuve

Supposons que l'on effectue n ajouts par push_back .

31/45

Complexité moyenne du push_back : preuve

Supposons que l'on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m a chaque fois, on a:

n<mf = k=xlog,(n)

31/45

Complexité moyenne du push_back : preuve

Supposons que l'on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m a chaque fois, on a:

n<mf = k=xlog,(n)

Le nombre total de recopies est donc :

logn(n) . meem(") _1 mxn

<
m-1 m-1

31/45

Complexité moyenne du push_back : preuve

Supposons que l'on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m a chaque fois, on a:

n<mf = k=xlog,(n)

Le nombre total de recopies est donc :

logn(n) . meem(") _1 mxn

<
m-1 m-1

31/45

Propriétés des vecteurs

Complexités des opérations sur les vecteurs
- Lecture / Ecriture : O(1)
- Ajout a la fin: O(1)
- Supression a la fin : O(1)
- Ajout a position donnée (insert(it,val)): O(N)

- Suppression a position donnée (erase(it)) : O(N)

32/45

La pile : Last In First Out (LIFO)

Principe

On ajoute et on retire les éléments un par un par le dessus.
Implémentations

vector (include <vector>) . push_back(elem), pop_back()

stack (include <stack>) . push(elem), pop()

\v push pop

33/45

La file : First In First Out (FIFO)

Principe

On ajoute les eléments a l'arriere et on retire les élements par 'avant.

Implémentations
Comme dans le cas de la pile : push et pop.

Tete Queue

1 s
BN - —B

34/45

File : propriétes

Complexité
- push:0O(1)
- pop: O(1)

Dans la STL

- queue (#include <queue>):file

- deque (#include <deque>):double ended queue

35/45

La liste chainée

Les structure vues précédemment ne sont efficaces que pour les ajouts
en déebut ou en fin de tableau. Si on veut insérer ou supprimer au
milieu du tableau, on utilise une liste chainée.

Structure
Chaque maillon connait le maillon précédent et le maillon suivant.

H Bl Eoud Ennd B

36/45

La liste : insérer un élément

Idée
Il suffit de modifier les indices des maillons précédents et suivants.

37/45

La liste : supprimer un élément

Idée

Le maillon qui précede celui a supprimer est lié directement a son
successeur.

38/45

La liste : implémentation

Une liste chainée est un tableau de maillons (ou chainons). Chaque
chainon connait sa valeur, son precédesseur et son successeur.

class Chainon{
public:
int prev, next;
double value;

g

39/45

La liste : implémentation - insertion

Pour insérer I'élément etem a l'indice i, on le place dans le tableau a la
case d'indice j puis on modifie les chainons a l'indice i—1 pour le faire
pointer sur son nouveau successeur.

t[j].val = elem; // assignation de elem dans la liste
t(jl.prev = i;
// t[j] est maintenant chainé au successeur de t[i]
t[j].next = t[i].next;
// le nouveau successeur de t[i] est désormais t[j]
tli].next = j;
// Par convention, -1 signifie que l'élément suivant n'existe pas
// (fin de la liste)
if(tl[jl.next = -1){

t[t[j].next].prev = j;
}

40/45

La liste : implémentation - suppression

// 0On chaine le prédécesseur s'il existe
if(t[i].prev != -1){

t[t[i].prev].next = t[i].next;
}
// 0n chaine le successeur s'il existe
if(t[i].next !=-1){

t[t[i].next].prev = t[i].prev;

}

41/45

La liste : implémentation réelle

Pointeurs

En pratique les champs next et prev sont des adresses mémoires,
c'est-a-dire des pointeurs sur les chainons.

STL
Implémentation standard : classe std: :list (#include <list>).

42 /45

Les itérateurs

Les itérateurs sont des éléments de la STL, qui permettent de parcourir
les structures comme les listes, les piles, les files, les vecteurs, ...

Ainsi, si une pile ne donne accés qu’'au premier élément, on peut
quand méme parcourir tout les éléments.

vector<double>::iterator it = vect.begin();
vector<double>: :const_iterator it2 = vect.begin();
for(; it != vect.end(); it++){

*it = 10;
}
for(; it2 != vect.end(); it2++){

cout << #1it2 << endl;

}

43/45

Récapitulatif des complexités

vecteur | pile | file | liste
push_back | O(1) | O(1) | O(1) | O(1)

pop_back o1 | oM | - o(1)
push_front | O(N) - - o(1)
pop_front O(N) - o) | O(1)
tabli] o(1) - - | O(N)
insert O(N) - - o(1)
erase O(N) - - o(1)

44[45

Autres structures classiques

- set :ensemble dans lequel un élément est présent au plus une
fois.

- map : associe a chaque élément une clé permettant de le retrouver
rapidement (= dictionnaires Python)

- hashmap : similaire a une map, mais les element sont indexés avec
une fonction de hachage pour accélérer les temps d’acces.

- File de priorité : file dont les eléments sortent par ordre de priorité.

- Graphes : généralisation des listes chainées (réseaux, arbres de
dépendances...)

45/45

	Qu'est-ce que l'algorithmique ?
	Complexité
	Notion de complexité

	Rappels sur les tableaux
	Structures de données
	Vecteurs
	Piles, files et listes
	Les itérateurs
	Récapitulaif
	Autres structures

