
Algorithmique et structures de données
Complexité et structures de données

Julien Hauret
Lundi 23 janvier 2022

Accès aux ressources du cours

Liens utiles

• Site du cours : http://imagine.enpc.fr/~monasse/Algo
• Slides : https://jhauret.github.io/teaching/
• Email : julien.hauret@lecnam.net

1/45

http://imagine.enpc.fr/~monasse/Algo
https://jhauret.github.io/teaching/
mailto:julien.hauret@lecnam.net

Plan de la séance

Qu’est-ce que l’algorithmique?

Complexité

Notion de complexité

Rappels sur les tableaux

Structures de données

Vecteurs

Piles, files et listes

Les itérateurs

Récapitulaif

Autres structures

2/45

Pourquoi ce cours?

Introduction à la programmation C++
Apprendre à manipuler le C++ comme outil.

• Savoir programmer.
• Concevoir un logiciel.
• Tester et compiler.

Algorithmique
Apprendre l’informatique comme discipline scientifique.

• Qu’est-ce qu’un algorithme ? Un bon algorithme?
• Comment évaluer et comparer différents algorithmes?
• Quels sont les algorithmes classiques pour mon problème?

3/45

Pourquoi ce cours?

Introduction à la programmation C++
Apprendre à manipuler le C++ comme outil.

• Savoir programmer.
• Concevoir un logiciel.
• Tester et compiler.

Algorithmique
Apprendre l’informatique comme discipline scientifique.

• Qu’est-ce qu’un algorithme ? Un bon algorithme?
• Comment évaluer et comparer différents algorithmes?
• Quels sont les algorithmes classiques pour mon problème?

3/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Algorithme

Qu’est-ce qu’un algorithme?
Une procédure comportant une suite finie d’opérations permettant
d’obtenir un résultat à partir d’entrées connues.

Propriétés d’un algorithme
Un algorithme est une procédure répétable (par un humain) :

• finie = réalisable en temps borné,
• non-ambigüe = bien définie,
• travaillant sur des entrées spécifiées,
• éventuellement produisant des sorties.

Thèse de Church (1935)
Ces règles suffisent à formaliser correctement la calculabilité.

4/45

Plan de la séance

Qu’est-ce que l’algorithmique?

Complexité

Notion de complexité

Rappels sur les tableaux

Structures de données

Vecteurs

Piles, files et listes

Les itérateurs

Récapitulaif

Autres structures

5/45

Notion de complexité

Définition
La complexité d’un algorithme est une estimation du nombre
d’opérations atomiques nécessaires à son exécution en fonction des
paramètres caractéristiques du problème.

Opération atomique
Opération de base qui prend toujours le même temps à s’exécuter :
multiplication, addition, accès à une case d’un tableau, etc.

Remarque
La complexité représente le comportement asymptotique de
l’algorithme (lorsque les dimensions des entrées deviennent très
grandes).

6/45

Notion de complexité

Les types de complexité

• La complexité en temps : le nombre d’opérations élémentaires
constituant l’algorithme.

• La complexité en espace : le nombre de cases mémoires
élémentaires occupées lors du déroulement de l’algorithme.

Remarque
On s’intéresse généralement à la complexité dans le pire des cas et,
plus rarement, à la complexité en moyenne.

7/45

Notion de complexité

Remarques

• La complexité en espace et en temps sont complémentaires :
• stocker tous les résultats =⇒ évite le recalcul, nécessite beaucoup
de mémoire.

• calculer à la demande =⇒ calculs redondants, peu de mémoire
nécessaire.

• En général, la complexité en espace n’est pas un problème et c’est
le temps qui importe (par exemple, pour des applications temps
réel).

8/45

Histogramme d’une image W×H : version rapide

// On stocke les 256 valeurs de l'histogramme
int histo[256];
// Initialisation à 0
for(int i=0; i<256; i++){

histo[i] = 0;
}
// Parcours de l'image par colonne
for(int x=0; x<image.width(); x++){

for(int y=0; y<image.height(); y++){
histo[image(x,y)]++;

}
}
// Affichage de l'histogramme
for(int i=0; i<256; i++){

drawRect(i,0,1,histo[i])
}

Complexités
Mémoire :
1 tableau de 256 cases
Temps :
W×H pixels visités

Opération de base : accès à une case d’un tableau.
9/45

Histogramme d’une image W×H : version rapide

// On stocke les 256 valeurs de l'histogramme
int histo[256];
// Initialisation à 0
for(int i=0; i<256; i++){

histo[i] = 0;
}
// Parcours de l'image par colonne
for(int x=0; x<image.width(); x++){

for(int y=0; y<image.height(); y++){
histo[image(x,y)]++;

}
}
// Affichage de l'histogramme
for(int i=0; i<256; i++){

drawRect(i,0,1,histo[i])
}

Complexités
Mémoire :
1 tableau de 256 cases
Temps :
W×H pixels visités

Opération de base : accès à une case d’un tableau.
9/45

Histogramme d’une image W×H : version lente

for(int i=0; i<256; i++){
// Valeur i de l'histogramme
int h = 0;
// Parcours de l'image
for(int x=0; x<image.width(); x++){

for(int y=0; y<image.height(); y++){
if(image(x,y) == c){
h++;

}
}

}
drawRect(c,0,1,h);

}

Complexités
Mémoire :
Pas de tableau
Temps :
256 passages sur
chaque pixel
→ 256×W×H

10/45

Histogramme d’une image W×H : version lente

for(int i=0; i<256; i++){
// Valeur i de l'histogramme
int h = 0;
// Parcours de l'image
for(int x=0; x<image.width(); x++){

for(int y=0; y<image.height(); y++){
if(image(x,y) == c){
h++;

}
}

}
drawRect(c,0,1,h);

}

Complexités
Mémoire :
Pas de tableau
Temps :
256 passages sur
chaque pixel
→ 256×W×H

10/45

Mesure de complexité

Bornes de complexité
Le nombre exact d’opérations élémentaires constituant un algorithme
peut-être complexe à déterminer. Pour plus de commodité, on
cherche une fonction f qui encadre celui-ci, c’est-à-dire :

∃ α,β ∈R / α · f(N)< complexité<β · f(N) pour N→∞ (1)

Notation
Par convention, on utilise la notation de Landau. On dit alors que
l’algorithme est en O(f(N)) avec N= {n1,n2,n3, . . .} sont les paramètres
caractéristiques du problème.

11/45

Exemple de mesure de complexité

Calcul de l’histogramme d’une image :

• nombre de pixels N=W×H ;
• nombre de couleurs c.

Histogramme rapide
• Espace : O(c)
• Temps : O(W×H)

Histogramme lent
• Espace : O(1)
• Temps : O(W×H×c)

12/45

Notion de complexité : exemples simples

Opération de base : accès à une case d’un tableau.

Paramètre caractéristique : n la longueur du tableau.

Parcours des éléments d’un tableau
// Utilisation d'un tableau type vector
// Tableau de taille n
for(int i=0; i<tab.size(); i++){
cout << tab[i] << endl;

}

Chaque case est accédée une et une seule fois

→ complexité O(n)

.

13/45

Notion de complexité : exemples simples

Opération de base : accès à une case d’un tableau.

Paramètre caractéristique : n la longueur du tableau.

Parcours des éléments d’un tableau
// Utilisation d'un tableau type vector
// Tableau de taille n
for(int i=0; i<tab.size(); i++){
cout << tab[i] << endl;

}

Chaque case est accédée une et une seule fois → complexité O(n).

13/45

Notion de complexité : exemples simples

Opération de base : accès à une case d’un tableau.

Paramètre caractéristique : n la longueur du tableau.

Recherche (naïve) de l’unicité des éléments dans un tableau
// Unicité dans tab
vector<bool> unique(tab.size(), false);
for(int i=0; i<tab.size(); i++){
for(int j=i+1; j<tab.size(); j++){

if(tab[i]==tab[j]){
unique[i] = unique[j] = true;

}
}

}

Deux parcours du tableau imbriqués

→ complexité O(n2)

.

14/45

Notion de complexité : exemples simples

Opération de base : accès à une case d’un tableau.

Paramètre caractéristique : n la longueur du tableau.

Recherche (naïve) de l’unicité des éléments dans un tableau
// Unicité dans tab
vector<bool> unique(tab.size(), false);
for(int i=0; i<tab.size(); i++){
for(int j=i+1; j<tab.size(); j++){

if(tab[i]==tab[j]){
unique[i] = unique[j] = true;

}
}

}

Deux parcours du tableau imbriqués → complexité O(n2).

14/45

Suite de Fibonacci

Définition

F0 = 0
F1 = 1

Fn = Fn−1+Fn−2 , ∀n≥ 2

15/45

Exemple : le ne terme de la suite de Fibonacci

Algorithme récursif (naïf)
int fibonacci(int n) {

if (n <= 1) {
return n;

}
return fibonacci(n - 1) + fibonacci(n - 2);

}

Complexité O(1+
p
5

2
n
).

16/45

Exemple : le ne terme de la suite de Fibonacci

Algorithme récursif (naïf)
int fibonacci(int n) {

if (n <= 1) {
return n;

}
return fibonacci(n - 1) + fibonacci(n - 2);

}

Complexité O(1+
p
5

2
n
).

16/45

Exemple : le ne terme de la suite de Fibonacci

Différentes implémentations d’un même calcul peuvent avoir des
complexités différentes !

Peu de mémoire
// Calcul à la volée
int fibonacci(int n){

int prec = 1, int p_prec = 0;
int resultat;
for(int i=0; i<n; i++){

resultat = prec + p_prec;
p_prec = prec;
prec = resultat;

}
return resultat;

}

Complexité O(n).

Peu de temps
// Pré-calcul
vector<int> fibo(10000000,0);
fibo[1] = 1;
for(int i=2; i<fibo.size(); i++){

fibo[i] = fibo[i-1] +
fibo[i-2];

}
// Utilisation
int fibonacci(int n){

return fibo[n];
}

Complexité O(1) (en utilisation).

17/45

Exemple : le ne terme de la suite de Fibonacci

Différentes implémentations d’un même calcul peuvent avoir des
complexités différentes !

Peu de mémoire
// Calcul à la volée
int fibonacci(int n){

int prec = 1, int p_prec = 0;
int resultat;
for(int i=0; i<n; i++){

resultat = prec + p_prec;
p_prec = prec;
prec = resultat;

}
return resultat;

}

Complexité O(n).

Peu de temps
// Pré-calcul
vector<int> fibo(10000000,0);
fibo[1] = 1;
for(int i=2; i<fibo.size(); i++){

fibo[i] = fibo[i-1] +
fibo[i-2];

}
// Utilisation
int fibonacci(int n){

return fibo[n];
}

Complexité O(1) (en utilisation).

17/45

Exemple : le ne terme de la suite de Fibonacci

Différentes implémentations d’un même calcul peuvent avoir des
complexités différentes !

Peu de mémoire
// Calcul à la volée
int fibonacci(int n){

int prec = 1, int p_prec = 0;
int resultat;
for(int i=0; i<n; i++){

resultat = prec + p_prec;
p_prec = prec;
prec = resultat;

}
return resultat;

}

Complexité O(n).

Peu de temps
// Pré-calcul
vector<int> fibo(10000000,0);
fibo[1] = 1;
for(int i=2; i<fibo.size(); i++){

fibo[i] = fibo[i-1] +
fibo[i-2];

}
// Utilisation
int fibonacci(int n){

return fibo[n];
}

Complexité O(1) (en utilisation).
17/45

Les grandes classes de complexité

Ordres de grandeur de complexité (1/2)

• O(1) : constant, pas d’influence des grandeurs du problème.
Exemple : accès à une case d’un tableau, somme de deux constantes.

• O(log(n)) : logarithmique, algorithmes rapides, pas besoin de lire
toutes les données.
Exemple : rechercher un élément dans un tableau trié.

• O(n) : linéaire, proportionnel au nombre d’éléments.
Exemple : sommer tous les éléments d’un tableau.

18/45

Les grandes classes de complexité

Ordres de grandeur de complexité (2/2)

• O(n log(n)) : linéarithmique, de nombreux algorithmes “rapides”.
Exemple : tri optimal, transformée de Fourier rapide.

• O(nk) : polynomiale, acceptable pour des données petites (faible
n) et des puissances faibles (petit k).
Exemple : tri naïf ((O(n2)), multiplication matricielle (O(n3)).

• O(2n) : exponentielle, utilisable en pratique seulement pour des
petites dimensions.

• O(n!) : factorielle, inutilisable dès que n dépasse la dizaine.

19/45

Temps de calcul relatifs

En supposant qu’une opération élémentaire prend 10 ns, pour n= 50 :

• O(1) : 10 ns
• O(log(n)) : 20 ns
• O(n) : 500 ns
• O(n log(n)) : 850 ns
• O(n2) : 25 µs
• O(2n) : 130 jours (' 4 mois)
• O(n!) : 1048 ans

>>> 14e9 (âge de l’univers)

20/45

Temps de calcul relatifs

En supposant qu’une opération élémentaire prend 10 ns, pour n= 50 :

• O(1) : 10 ns
• O(log(n)) : 20 ns
• O(n) : 500 ns
• O(n log(n)) : 850 ns
• O(n2) : 25 µs
• O(2n) : 130 jours (' 4 mois)
• O(n!) : 1048 ans >>> 14e9 (âge de l’univers)

20/45

Exemple : flouter une image

Floutage
// Flouter une image W×H sur un rayon r
for(int i=r/2; i<W-r/2; i++){

for(int j=r/2; j<H-r/2; j++){
newIm[i,j] = 0;
for(int k=i-r/2; k<i+r/2; k++){
for(int m=j-r/2; m<j+r/2; m++){
newIm[i,j] += im(k,m);

}
}
newIm[i,j]/= r*r;

}
}

→ complexité O(W×H× r2)

21/45

Exemple : flouter une image

Floutage
// Flouter une image W×H sur un rayon r
for(int i=r/2; i<W-r/2; i++){

for(int j=r/2; j<H-r/2; j++){
newIm[i,j] = 0;
for(int k=i-r/2; k<i+r/2; k++){
for(int m=j-r/2; m<j+r/2; m++){
newIm[i,j] += im(k,m);

}
}
newIm[i,j]/= r*r;

}
}

→ complexité O(W×H× r2)

21/45

Classes de complexité

P versus NP
Les problèmes de classe P sont les problèmes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problèmes sont dits de classe NP si l’on connaît seulement
un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de problème NP

Un commercial doit parcourir N = {n1, . . . ,nk} villes
séparées par les distances di,j. Quelle est le chemin
qui minimise la distance totale parcourue?

Approche naïve : O(n!), meilleur algorithme exact connu : O(n22n).

Question à 1 000 000$
P=NP ou P 6=NP ? (problème du millénaire de l’Institut Clay) 22/45

Classes de complexité

P versus NP
Les problèmes de classe P sont les problèmes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problèmes sont dits de classe NP si l’on connaît seulement
un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de problème NP

Un commercial doit parcourir N = {n1, . . . ,nk} villes
séparées par les distances di,j. Quelle est le chemin
qui minimise la distance totale parcourue?

Approche naïve : O(n!), meilleur algorithme exact connu : O(n22n).

Question à 1 000 000$
P=NP ou P 6=NP ? (problème du millénaire de l’Institut Clay) 22/45

Classes de complexité

P versus NP
Les problèmes de classe P sont les problèmes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problèmes sont dits de classe NP si l’on connaît seulement
un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de problème NP

Un commercial doit parcourir N = {n1, . . . ,nk} villes
séparées par les distances di,j. Quelle est le chemin
qui minimise la distance totale parcourue?

Approche naïve : O(n!), meilleur algorithme exact connu : O(n22n).

Question à 1 000 000$
P=NP ou P 6=NP ? (problème du millénaire de l’Institut Clay) 22/45

Classes de complexité

P versus NP
Les problèmes de classe P sont les problèmes pour lesquels un
algorithme de résolution en temps polynomial est connu.
Les autres problèmes sont dits de classe NP si l’on connaît seulement
un algorithme polynomial permettant de vérifier une solution et
NP-difficile sinon.

Example de problème NP

Un commercial doit parcourir N = {n1, . . . ,nk} villes
séparées par les distances di,j. Quelle est le chemin
qui minimise la distance totale parcourue?

Approche naïve : O(n!), meilleur algorithme exact connu : O(n22n).

Question à 1 000 000$
P=NP ou P 6=NP ? (problème du millénaire de l’Institut Clay) 22/45

En pratique…

Relativisons !

• Les complexités sont asymptotiques : elles sont valables pour les
grandes tailles de données.

• On omet généralement les constantes multiplicatives dans la
notation O().

Exemple

• Algorithme A : 106×n=O(n)
• Algorithme B : n2 =O(n2)

→ L’algorithme A est plus rapide ssi n> 106

23/45

Complexité en moyenne et dans le pire des cas

• Complexité moyenne : caractérise le comportement attendu pour
des répétitions sur des données aléatoires.

• Complexité dans le pire des cas : caractérise le comportement
dans la pire configuration des données.

Importance
L’application détermine le comportement important.

• Complexité moyenne : requêtes dans un moteur de recherche,
traitement d’image.

• Complexité dans le pire des cas : applications critiques
(aéronautique, applications temps-réel…).

24/45

Plan de la séance

Qu’est-ce que l’algorithmique?

Complexité

Notion de complexité

Rappels sur les tableaux

Structures de données

Vecteurs

Piles, files et listes

Les itérateurs

Récapitulaif

Autres structures

25/45

Les tableaux en C++

Les tableaux en C++ sont de taille fixe. Elle peut être déterminée soit :

• à la compilation (tableau statique),
• à l’exécution (tableau dynamique)

Les tableaux sont des structures difficiles à manipuler (gestion de la
mémoire, pas de mécanisme de copie inexistant, etc.).

Pour simplifier
Il est plus facile d’utiliser les vecteurs (vector) de la STL.

26/45

Plan de la séance

Qu’est-ce que l’algorithmique?

Complexité

Notion de complexité

Rappels sur les tableaux

Structures de données

Vecteurs

Piles, files et listes

Les itérateurs

Récapitulaif

Autres structures

27/45

Le vecteur

La classe
La classe est std::vector (simplement vector si on a utilisé
using namespace std).
Elle est « templatée », elle peut être utilisée pour contenir n’importe
quel type de variable.

Avantages

• Pas de mémoire à gérer ;
• Taille du vecteur connue grâce à la méthode .size() ;
• La taille n’a pas besoin d’être connue dès le départ
(redimensionnable !).

28/45

Complexité de l’ajout d’un élément

Implémentation naïve
Quand on ajoute un élément avec la fonction .push_back() , on
redimensionne le tableau avec taille plus grande d’une case.

Ceci implique une recopie du tableau à chaque .push_back .

Complexité
O(n)

29/45

Complexité de l’ajout d’un élément

Implémentation naïve
Quand on ajoute un élément avec la fonction .push_back() , on
redimensionne le tableau avec taille plus grande d’une case.

Ceci implique une recopie du tableau à chaque .push_back .

Complexité
O(n)

29/45

Complexité de l’ajout d’un élément

Implémentation astucieuse

• La taille du vector ne correspond pas la taille du tableau alloué.
• Quand on atteint la taille maximale du tableau, on réalloue en
multipliant cette taille par un facteur m.

Complexité
O(1) (en moyenne, O(n) quand la taille maximale est atteinte)

30/45

Complexité de l’ajout d’un élément

Implémentation astucieuse

• La taille du vector ne correspond pas la taille du tableau alloué.
• Quand on atteint la taille maximale du tableau, on réalloue en
multipliant cette taille par un facteur m.

Complexité
O(1) (en moyenne, O(n) quand la taille maximale est atteinte)

30/45

Complexité moyenne du push_back : preuve

Supposons que l’on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m à chaque fois, on a :

n<mk⇒ k≈ logm(n)

Le nombre total de recopies est donc :
k∑
p=1

mp =
logm(n)∑
p=1

mp =mm
logm(n)−1
m−1 < m×n

m−1

Le coût moyen (nombre de recopies / nombre d’ajouts) est alors :

m
m−1 =O(1)

31/45

Complexité moyenne du push_back : preuve

Supposons que l’on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m à chaque fois, on a :

n<mk⇒ k≈ logm(n)

Le nombre total de recopies est donc :
k∑
p=1

mp =
logm(n)∑
p=1

mp =mm
logm(n)−1
m−1 < m×n

m−1

Le coût moyen (nombre de recopies / nombre d’ajouts) est alors :

m
m−1 =O(1)

31/45

Complexité moyenne du push_back : preuve

Supposons que l’on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m à chaque fois, on a :

n<mk⇒ k≈ logm(n)

Le nombre total de recopies est donc :
k∑
p=1

mp =
logm(n)∑
p=1

mp =mm
logm(n)−1
m−1 < m×n

m−1

Le coût moyen (nombre de recopies / nombre d’ajouts) est alors :

m
m−1 =O(1)

31/45

Complexité moyenne du push_back : preuve

Supposons que l’on effectue n ajouts par push_back .

Soit k le nombre de redimensionnements. La taille du vecteur étant
multipliée par m à chaque fois, on a :

n<mk⇒ k≈ logm(n)

Le nombre total de recopies est donc :
k∑
p=1

mp =
logm(n)∑
p=1

mp =mm
logm(n)−1
m−1 < m×n

m−1

Le coût moyen (nombre de recopies / nombre d’ajouts) est alors :

m
m−1 =O(1)

31/45

Propriétés des vecteurs

Complexités des opérations sur les vecteurs

• Lecture / Écriture : O(1)
• Ajout à la fin : O(1)
• Supression à la fin : O(1)
• Ajout à position donnée (insert(it,val)) : O(N)
• Suppression à position donnée (erase(it)) : O(N)

32/45

La pile : Last In First Out (LIFO)

Principe
On ajoute et on retire les éléments un par un par le dessus.

Implémentations

• vector (include <vector>) : push_back(elem) , pop_back()

• stack (include <stack>) : push(elem) , pop()

push pop

33/45

La file : First In First Out (FIFO)

Principe
On ajoute les éléments à l’arrière et on retire les éléments par l’avant.

Implémentations
Comme dans le cas de la pile : push et pop.

Tête Queue

T Q

T Q

QT

Pop
Push

34/45

File : propriétés

Complexité
• push : O(1)
• pop : O(1)

Dans la STL

• queue (#include <queue>) : file
• deque (#include <deque>) : double ended queue

35/45

La liste chaînée

Les structure vues précédemment ne sont efficaces que pour les ajouts
en début ou en fin de tableau. Si on veut insérer ou supprimer au
milieu du tableau, on utilise une liste chaînée.

Structure
Chaque maillon connait le maillon précédent et le maillon suivant.

36/45

La liste : insérer un élément

Idée
Il suffit de modifier les indices des maillons précédents et suivants.

37/45

La liste : supprimer un élément

Idée
Le maillon qui précède celui à supprimer est lié directement à son
successeur.

38/45

La liste : implémentation

Une liste chaînée est un tableau de maillons (ou chainons). Chaque
chainon connaît sa valeur, son précédesseur et son successeur.

class Chainon{
public:

int prev, next;
double value;

};

39/45

La liste : implémentation - insertion

Pour insérer l’élément elem à l’indice i, on le place dans le tableau à la
case d’indice j puis on modifie les chainons à l’indice i−1 pour le faire
pointer sur son nouveau successeur.

t[j].val = elem; // assignation de elem dans la liste
t[j].prev = i;
// t[j] est maintenant chaîné au successeur de t[i]
t[j].next = t[i].next;
// le nouveau successeur de t[i] est désormais t[j]
t[i].next = j;
// Par convention, -1 signifie que l'élément suivant n'existe pas
// (fin de la liste)
if(t[j].next != -1){
t[t[j].next].prev = j;

}

40/45

La liste : implémentation - suppression

// On chaîne le prédécesseur s'il existe
if(t[i].prev != -1){
t[t[i].prev].next = t[i].next;

}
// On chaîne le successeur s'il existe
if(t[i].next !=-1){
t[t[i].next].prev = t[i].prev;

}

41/45

La liste : implémentation réelle

Pointeurs
En pratique les champs next et prev sont des adresses mémoires,
c’est-à-dire des pointeurs sur les chaînons.

STL
Implémentation standard : classe std::list (#include <list>).

42/45

Les itérateurs

Les itérateurs sont des éléments de la STL, qui permettent de parcourir
les structures comme les listes, les piles, les files, les vecteurs, …

Ainsi, si une pile ne donne accès qu’au premier élément, on peut
quand même parcourir tout les éléments.

vector<double>::iterator it = vect.begin();
vector<double>::const_iterator it2 = vect.begin();
for(; it != vect.end(); it++){
*it = 10;

}
for(; it2 != vect.end(); it2++){
cout << *it2 << endl;

}

43/45

Récapitulatif des complexités

vecteur pile file liste
push_back O(1) O(1) O(1) O(1)
pop_back O(1) O(1) - O(1)
push_front O(N) - - O(1)
pop_front O(N) - O(1) O(1)
tab[i] O(1) - - O(N)
insert O(N) - - O(1)
erase O(N) - - O(1)

44/45

Autres structures classiques

• set : ensemble dans lequel un élément est présent au plus une
fois.

• map : associe à chaque élément une clé permettant de le retrouver
rapidement (' dictionnaires Python)

• hashmap : similaire à une map, mais les élément sont indexés avec
une fonction de hachage pour accélérer les temps d’accès.

• File de priorité : file dont les éléments sortent par ordre de priorité.
• Graphes : généralisation des listes chaînées (réseaux, arbres de
dépendances…)

45/45

	Qu'est-ce que l'algorithmique ?
	Complexité
	Notion de complexité

	Rappels sur les tableaux
	Structures de données
	Vecteurs
	Piles, files et listes
	Les itérateurs
	Récapitulaif
	Autres structures

