Algorithmique et structures de donnees

Algorithmes de tri

Julien Hauret
Lundi 30 janvier 2023

Plan de la séance

Rappels

1/38

Les types de complexité

Deux complexités differentes

- La complexité en temps : le nombre d’opérations élémentaires
effectuées par l'algorithme.

- La complexité en espace : le nombre de cases mémoires
élémentaires occupées lors du déroulement de l'algorithme.

2/38

Complexités classiques (en temps)

- 0(1) : acces aux eléments d’'un tableau;

- O(logn) : recherche d'un element dans une liste triee;
- 0(n) : parcours d'un tableau;

- 0(nlogn) : tris rapides;

- 0(n?) : tris basiques;

(

- 0(2") : problemes difficiles.

3/38

Exemple : la suite de Fibonacci

Dans le cours d'introduction au C++, on a vu deux méthodes pour
trouver les termes de la suite de Fibonnacci :

{fo =f1="1
fn =fra+fno

4/38

Exemple : la suite de Fibonacci

La formulation du probléme incite a l'utilisation de la récursivité :

int fibonacci(int n){
if (n < 2){
return I1;
} else {
return fibonacci(n-1) + fibonacci(n-2);

}

5/38

Exemple : la suite de Fibonacci

fib1(5)
/ \

fib1(4) fib1(3)

/ \
fib1(3) fib1(2) fib1(2) fib1(1)
N RN N\

fib1(2) fibl(1) fib1(0) fib1(1) fib1(0) fib1(1)

o

fib1(0) fib1(1)

6/38

Exemple : la suite de Fibonacci

Opération éléementaire = addition (+).
La complexité se mesure ici en nombre d’additions (i.e. en nombre
d'appels a la fonction).

- fibonacci(0):0
- fibonacci(1):0
- fibonacci(2):
- fibonacci(3):
- fibonacci(4):
- fibonacci(5):
- fibonacci(6):12

- fibonacci(12):20

=

~N N

7/38

Exemple : la suite de Fibonacci

Si A, représente le nombre d'additions a faire au rang n :

2 XAn_Z < An 2 XAn_‘l

27 < A, < 2N

IA

Ceci donne une complexité Crponacci telle que :

ST

0(2) = Cﬁbonacci = O(zn)

Impossible a calculer pour des n grands.

8/38

Exemple : la suite de Fibonacci

Une seconde méthode, non récursive :

int fibonacci(int n){
// Initialisation des deux premiers termes
int fn_m2 = 1, fn_m1 = 1 ;
for(int i=2; i <= n; i++) {
int fn = fn_m2 + fn_mil
// Décalage du rang n-1 au rang n
fn_m2 = fn_mil;
fn_ml = fn;
}

return fnml;

9/38

Exemple : la suite de Fibonacci

L'algorithme ainsi réécrit ne comporte qu’'une seule boucle constituée
uniquement d'opérations en temps constant.

La complexité Ceponacci €St en O(n).

Le choix de l'implémentation d'un méme calcul peut beaucoup influer
sur la performance.

Remarque

La récursivité n'est pas une mauvaise chose, elle est utile quand elle
ne recalcule pas plusieurs fois la méme chose.

10/38

Plan de la séance

Complexité minimale

11/38

Complexité minimale

Théoréeme
Soit L ={ay,ay,...,as} un ensemble de n valeurs dans E un ensemble
continu ou de grand cardinal.

La complexité minimale d'un algorithme de tri prenant en entrée L et
renvoyant en sortie les valeurs a; ordonnées par ordre croissant est
0©(nlogn) (linéarithmique).

12/38

Complexité minimale : preuve

Propriétés d’'un algorithme de tri

1. Tout algorithme de tri peut se ramener a une succession de
comparaisons et de transpositions d'éléements,

- l'opération élémentaire pour la complexité en temps sera la
comparaison entre deux éléements du tableau.
2. Tout algorithme de tri doit étre capable de trier n'importe quelle
liste arbitraire, c'est-a-dire de trier les n! permutations possibles
de n'importe quelle liste.

13/38

Complexité minimale : preuve - Arbre de tri

Lemme
On peut représenter un algorithme de tri sous la forme d’un arbre :

- chaque nceud correspond a une comparaison,

- chaque nceud a deux arétes, une pour chaque résultat de la
comparaison,

- chaque feuille est une permutation possible de la liste d’entrée.

Conséquences
- L'arbre est un arbre binaire de hauteur h a 2" feuilles.

- 'arbre a au minimum n! feuilles.

- La hauteur de l'arbre est le nombre de comparaisons nécessaires
pour obtenir une liste triée.

14/38

Complexité minimale : preuve - Arbre de tri - Exemple

Exemple pour n=3 et pour le tri a bulles : abc.

a>b
abc bac yes -
no —
a>c a>c
abc cba bac bca
b>c b>c b>c b>c
abc acb -- cba bac -- bca cba

15/38

Complexité minimale des tris (1/2)

Chaque feuille de l'arbre est :

- soit vide car correspond a un ordonnancement impossible,
- soit une des permutations possibles de la liste.

Par conséquent, le nombre de feuilles de l'arbre est supérieur au
nombre de permutations de la liste d'entrée

nll < 2N

ce qui implique log,(n!) < h.

16/38

Complexité minimale des tris (1/2)

Chaque feuille de l'arbre est :

- soit vide car correspond a un ordonnancement impossible,
- soit une des permutations possibles de la liste.

Par conséquent, le nombre de feuilles de l'arbre est supérieur au
nombre de permutations de la liste d'entrée

nll < 2N

ce qui implique log,(n!) < h.

En utilisant la formule de Stirling, n! ~ v2zn (2)", il vient

n
h=n-log,(n) - v O(n-logyn)

16/38

Complexité minimale des tris (2/2)

D’une part, nous venons de montrer que
h=0(n-log,n) .

D’autre part, il existe des algorithmes de tri de complexite ®(nlogn)
donc h=0(n-logn).

Finalement, il vient :
h=0(nlogn).

h étant la hauteur de 'arbre mais aussi le nombre de comparaisons
entre élements de la liste.

17/38

Complexité minimale : exemple

Exemple du calcul de ['histogramme d’une image.

int histo[256];

for(int i=0; i < 256; i++){
histo[i] = 0;

}

for(int x=0; x < image.width(); x++){
for(int y=0; y < image.height(); y++){

histo[image(x,y)]++;

}

18/38

Complexité minimale : exemple

Exemple du calcul de ['histogramme d’une image.

int histo[256];

for(int i=0; i < 256; i++){
histo[i] = 0;

}

for(int x=0; x < image.width(); x++){
for(int y=0; y < image.height(); y++){

histo[image(x,y)]++;

}

Chaque pixel doit étre observé au moins une fois : O(n).
La complexité minimale n’est pas liée a 'implémentation mais a la
tache a effectuer.

18/38

Remarque a méditer

Le theoreme de la complexité minimale des algorithmes de tri n'est
valable que pour des tableaux a valeurs dans de grands ensembles (de
cardinal infini ou presque).

Exercice

- Proposer un algorithme de tri en O(n) pour un tableau de n
éléments a valeurs entieres dans [0, R].

19/38

Plan de la séance

Algorithmes quadratiques

20/38

Le tri a bulles

for(int i=n; i > 0; i--){
for(int j=0; j < i-1; j++){
if(t[i] > t[j+1]){
swap(t[j], t[j+1]);
}

Complexiteé
Le tri a bulles réalise (n=1)+(n=2)+...+1= w comparaisons.

La complexité du tri a bulles est en O(n?) en moyenne et dans le pire
des cas.

Autres algorithmes classiques en O(n?)

Le tri par insertion et le tri par sélection (cf. TP). 21/38

Plan de la séance

QuickSort : le tri rapide

22/38

QuickSort : principe

1. Choisir un élément du tableau, il devient le pivot.

2. Placer le pivot a la position i de sorte que tous les éléments
d’indice inférieurs a i soient plus petits que le pivot et tous les
élements d’indice supérieurs a i soient plus grands.

3. Reitérer le procéde sur chacune des deux sous-parties du tableau.

23/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

8 |18]2012 |5 |1 |14]|3 |34]21]15]9 |7 2317.

24/38

QuickSort : placer le pivot

8 [18]20(2 |5 |1 |14]|3 |34]|21|15|9 |7 |23

24/38

QuickSort : placer le pivot

8 |18|120(2 (5 |1 |14|3 (34|21]15(9 (7 |23

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

24/38

QuickSort : placer le pivot

\

24/38

QuickSort : placer le pivot

A

24/38

QuickSort : placer le pivot

Yy

24/38

QuickSort : placer le pivot

A

24/38

QuickSort : placer le pivot

24/38

Complexité de Quicksort

Théoreme
Quicksort est un tri en O(nlog(n)) en moyenne.

Demonstration dans le chapitre 3.

25/38

QuickSort : complexité - Pire des cas

Le parcours du tableau implique n—1 comparaison. Donc :
Ch=(n=1)+Ci+Cph_j_q
Si on suppose que i=n-1(déja triée) :
Ch=(n=1)+Cp

Au rang suivant :

En fait, cela revient a effectuer un tri a bulles:

26/38

QuickSort : éviter le pire des cas

Pour éviter le pire des cas en moyenne on utilise généralement :

- un tirage du pivot au hasard
- un pivot au milieu du tableau

- un melange de la liste au prealable

27/38

QuickSort : en pratique

- QuickSort est implémenté dans la STL (#include <algorithm>).

- Il existe des algorithmes en O(nlogn) quoi qu'il arrive (tri par tas,
tri fusion, ...), mais il sont moins rapides que QuickSort en
moyenne.

28/38

Implémentation non-optimale en Python

def quicksort(arr):
if len(arr) <= 1:
return arr
pivot = arr[len(arr) // 2]
left = [x for x in arr if x < pivot]
middle = [x for x in arr if x == pivot]
right = [x for x in arr if x > pivot]
return quicksort(left) + middle + quicksort(right)

print(quicksort([3,6,8,10,1,2,1]))

29/38

Plan de la séance

Tri par tas

30/38

File de priorité

La file de priorité est une structure de données permettant :

- Accés a l'element le plus prioritaire en O(1)
- Ajout d’un element en O(logn)

- Retrait d'un elément en O(logn)

Etude de la file de priorité au chapitre 4.

31/38

Le tri par tas remplit une file de priorité et puis retire les élements un
par un.

void HeapSort(std::vector<double> &v){
FilePriorite f;
for(int i=0; i < v.size(); i++){
f.push(v[il);
}
for(int i=0; i < v.size(); i++){
v[i] = f.pop();
}
}

32/38

Conclusion

Le tri par tas est un tri en O(nlogn) dans tous les cas. Cependant en
comparaison a QuickSort, il utilise plus de mémoire et est plus long en
moyenne.

En pratique c’est QuickSort le plus utilisé.

33/38

Tri par tas : complexités a retenir

- Tri: O(nlogn)
- Recherche dans un tableau trié : O(logn)

- Recherche dans un tableau non trie : O(n)

34/38

Plan de la séance

Recherche dans un tableau

35/38

Recherche dans un tableau non trié

Tableau non trié

Pas d’a priori sur la structure du tableau. Il faut regarder chaque
élément.

Complexité

36/38

Recherche dichotomique

Le fait de savoir que le tableau est trié permet de réduire la complexité
de la recherche a O(log(n)).

int dichotomie(const std::vector<double>§ V, double val){
int debut = 0, fin = v.size() - 1;
while(debut < fin){
int milieu = (debut + fin)/2;
if(V[milieu] == val)
return milieu;
if(Vimilieu] < val){
debut = milieu + 1;
} else {
fin = milieu - 1;
}
}

// On renvoie 1'indice actuel si c'est la bonne valeur
// ou -1 sinon car la valeur n'est pas dans le vecteur
return (V[milieu] == val) ? a:-1;

/ 37/38

Travaux pratiques
Implémentation de quelques algorithmes de tri en C++.

38/38

	Rappels
	Complexité minimale
	Algorithmes quadratiques
	QuickSort: le tri rapide
	Tri par tas
	Recherche dans un tableau

