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Il existe de nombreux algorithmes de tris :

- en complexité quadratique O(n?) (tri a bulles, tri par insertion, tri
par sélection...)

- en complexité linéarithmique en moyenne O(n-log(n)) (tri rapide)

- en complexité linéarithmique dans le pire cas O(n-log(n)) (tri par
tas, tri fusion)
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Il existe de nombreux algorithmes de tris :

- en complexité quadratique O(n?) (tri a bulles, tri par insertion, tri
par sélection...)
- en complexité linéarithmique en moyenne O(n-log(n)) (tri rapide)
- en complexité linéarithmique dans le pire cas O(n-log(n)) (tri par
tas, tri fusion)
Complexité minimale des tris
Dans le cas général, un algorithme de tri est au moins O(n-log(n)).

En pratique
En pratique, on utilise le tri rapide (QuickSort) car il offre les meilleurs

performances et on utilise une contre-mesure pour éviter de se
trouver dans le pire cas.
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Plan de la séance

Diviser pour régner
Quicksort

Tri fusion
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Divide and Conquer

Diviser pour regner
Principe

Diviser un probleme en sous-problemes plus petits, plus faciles a
résoudre.
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Rappel - principe du tri rapide

12163515/ 9[11]2[13[16] 7 41014.

al1le6[3][5]7 2.9 13/16/15/12[10[14[11

al1]e[3]5]7]2 . 9[13[16/15/12/10[14]11

al1l6]3]5 7. 9 131615121014.
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QuickSort : complexité

Le parcours du tableau implique N -1 comparaison. Puis on réitére
'opération sur chaque moitié de tableau.

En notant i la position du pivot, la complexité s'écrit :

car le tri du tableau de longueur N implique :

- N -1 comparaisons pour placer le pivot,
- le tri d’'un tableau de longueur i—1(a gauche du pivot),

- le tri d’'un tableau de longueur N—i (a droite du pivot).
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QuickSort : complexité

Le pivot peut se retrouver a n'importe quelle position de facon
équiprobable :
N

E{Cny (1) +Cnoy (V=)= 3. imy (P 1)+ Gy (=)
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QuickSort : complexité

Le pivot peut se retrouver a n'importe quelle position de facon
équiprobable

N

E{Cny (1) +Cnoy (V=)= 3. imy (P 1)+ Gy (=)

puis, en réinjectant dans la complexité moyenne :

Cmoy(N) =N—-1+— Z [Cmoy(P=1)+ Cmoy(N=p)] .
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QuickSort : complexité

N
Croy(N) =N =1+ ZCmoy )+ 57 L Cray(N=p) -
p=1
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QuickSort : complexité

N
Un changement de variable g=N—-p dans la seconde somme donne :

1 N 1 N
Cmoy(N)=N=1+ =3 Cmoy(p=1)+ = 3 Cmoy(q -
Np:1 I\qu1
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QuickSort : complexité

1 N
p=1
Un changement de variable g=N—-p dans la seconde somme donne :

1 N 1 N
Cmoy(N)=N=1+ =3 Cmoy(p=1)+ = 3 Cmoy(q -
Np:1 I\qu1

Autrement dit, la complexité se réeécrit :

2 N
Cmoy(N)=N-1+ N > Cmoy(p—1)
p=1
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QuickSort : complexité

En multipliant par N des deux cotés :

N
NCmoy(N):N(N_1)+2Z]Cmoy(p_1) (a)
p=
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QuickSort : complexité

En multipliant par N des deux cotés :

N
NCmoy(N):N(N_1)+2Z]Cmoy(p_1) (CI)
p=

En outre, pour un tableau de taille N-1, la relation (a) se réécrit:

N-1
(N=1)Crmoy(N=1) = (N=1).(N=2) +2 Z1Cmoy(p—1) . (b)
=
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QuickSort : complexité

En multipliant par N des deux cotés :

N
NCmoy(N):N(N_1)+2Z]Cmoy(p_1) (CI)
p=

En outre, pour un tableau de taille N-1, la relation (a) se réécrit:

N-1
(N=1)Crmoy(N=1) = (N=1).(N=2) +2 Z1Cmoy(p—1) . (b)
=

En calculant (a)—(b), il vient :
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QuickSort : complexité

En simplifiant :
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QuickSort : complexité

En simplifiant :

On divise par N(N+1) :

Cmoy(N) 2 Cmoy(/\/* 1)

N+l N+1T N
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QuickSort : complexité

En simplifiant :

On divise par N(N+1) :

Cmoy(N) 2 Cmoy(N*T)

N+l N+1T N

Puis par récurrence :

Cmoy(N) & 2 N Crmoy(1)
N+1 Sk 2
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QuickSort : complexité

Comme :

Finalement :

Cmoy(N) = O(Nlog(N))
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QuickSort : complexité

Comme :

N—oo

N 1
§E~Iog)

en remplacant dans la complexité moyenne, on obtient ['équivalence

oy(1)
2

C
Croy(N)  ~_(N+1)log(N) +(N+1)—

Finalement :

Cmoy(N) = O(Nlog(N))
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Le principe du tri fusion est proche du tri rapide. L'idée est de couper
un tableau en deux, de trier chaque moitié du tableau, puis de remplir
un nouveau tableau avec les sous-tableaux triés.

12/37



17395104682
17395104682
13579246810
12345678910
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Calcul de la complexité

Le parcours du tableau implique N—1 comparaison. Donc :

Cv=(N=1)+Ci+Cyiq
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Calcul de la complexité

Le parcours du tableau implique N—1 comparaison. Donc :

Cv=(N=1)+Ci+Cyiq

En moyenne, | = 5 !

CN=N+2~C%
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A
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Calcul de la complexité

Le parcours du tableau implique N—1 comparaison. Donc :

Cv=(N=1)+Ci+Cyiq
F N .
En moyenne, | = 5!
CN=N+2~C%
Au rang suivant :
CN=2N+4-CN
A
Puis :
CN=f?N+2k-Cﬂk
2
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Calcul de la complexité

Le parcours du tableau implique N—1 comparaison. Donc :

Cv=(N=1)+Ci+Cyiq

En moyenne, | = 5 !

CN=N+2~C%
Au rang suivant :
CN=2N+4-CN
A
Puis :
Cn=RN+2F. C;

X‘Z

La récurrence se termine apres k= log,(N) étapes, donc:

)
Cny=NlogN+NCy=0(NlogN)
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Le tri fusion est un O(Nlog(N)) dans tous les cas. Cependant il est en
moyenne plus lent que Quicksort, c’est pourquoi ce dernier est le plus
utilise.
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Plan de la séance

Transformée de Fourier rapide
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Transformée de Fourier discrete

La transformée de Fourier discréte (Discrete Fourier Transform ou DFT)
est un algorithme central en traitement du signal et des images.

/ frequency
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Transformée de Fourier discrete

La transformée de Fourier discréte (Discrete Fourier Transform ou DFT)
est un algorithme central en traitement du signal et des images.

/ frequency

Digression spectrogramme
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https://jhauret.github.io/presentation/presentation-LIUM/LIUM_November_10.html#/4/1/1

DFT : construction (1/2)

Soit 'espace complexe C" et la forme hermitienne :

N-T
f,9>= 3 fkIglR]-

j=0
La famille des vecteur ey, :
1 (Lm0 L2nuk 4 (N=1)-k
e,?:—(ew , ew'k o, ew )
VN

pour R=0,...,N—1est une famille libre orthonormale (donc une base).
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DFT : construction (2/2)

Soit f un tableau de N nombres complexes. Comme (eg, é1,...,en-1) est
une base, f se décompose de la facon suivante :

N=1
= (iee;
j=0

Les coefficients de la transformée de Fourier discréte de f sont les
coordonnées de f dans cette nouvelle base.
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Calcul de la DFT

La transformée de Fourier discréte transforme un tableau f de N
nombres complexes en un tableau DFT(f) de méme taille par
'opération suivante :

ey = S file- 2k
DFT(f)[R] = (f, e = m};f[/]e :

Interprétation physique

Le coefficient DFT(f)[R] représente 'énergie du signal f a la frequence
k.
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DFT : transformeée inverse

Soit f un tableau de N nombres complexes. Comme (eg, é1,...,en-1) est
une base:

N—1
f=2 (epe
j=0

ou encore :

N—1
f= 2 ATl
]:
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DFT : transformeée inverse

N=1 .
f= ZO DFT(f)l/]e;
}:

N-1
fIR] = (ZO DFT(A)] ej) [R]
j=

1 N-1

Y DFT(f)[je* ¥F
=0

M=

Notant IDFT la transformée inverse (IDFToDFT =1d) :

1 N-1

AL DFT(f)[jle* ¢

fIR] = IDFT(DFT(f))[R] =
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Pour résumer, f un tableau de N nombres complexes :

1 N= 2in
DFT(f)[R] = TZ]C[}]Q_W

2171

IDFT(g)[k] = —Zgu1e~
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Pourquoi?

Motivation

La transformée de Fourier transformes les convolutions (= opérations
de filtrage) en multiplication. Il est bien plus rapide de faire une
multiplication dans 'espace de Fourier qu’'une convolution dans
l'espace initial.

Input image Convolution Feature map
Kermel
-1 -1 -1
-1 8 -1
-1 -1 -1
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Pourquoi?

Motivation

La transformée de Fourier transformes les convolutions (= opérations
de filtrage) en multiplication. Il est bien plus rapide de faire une
multiplication dans 'espace de Fourier qu'une convolution dans
l'espace initial.

Original JPG
824 KB

o
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DFT : complexité a priori

1N1

DTN = 7 X file e i,

Calculer un terme : O(N).

Calculer tous les termes : O(N?)
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Fast Fourier Transform

T W

James William Cooley John Wilder Tukey
(1926-) (1915-2000)

La FFT est un algorithme introduit par Cooley and Tukey en 1965. Elle
permet de calculer la DFT en temps Nlog(N).

Elle utilise une approche diviser pour régner.
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FFT : algorithme

On sépare la somme dans la DFT en indices pairs et impairs :

N/2-1 N/2-1

VN DFT(f)[K] = Z fl2j]e” W@k 4 Z fl2j +1]e” 7 @Dk

dont on déduit facilement

N/2-1
VN DFT()[R1= 3 fl2jle” ey o2 Z ﬂ2/+1]e Wik,

j=0
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FFT : algorithme

On retrouve en fait le calcul de la transformée de Fourier discréte sur
les deux sous-tableaux :

VNDFT(f)[k] = \f (DFT(Fyair) [kl + €= ¥ *DFT (fimpair) K (™)

* fpair €st le sous-tableau des indices pairs de f: f[o:n:2] ;
* fimpair €st celui des indices impairs : f[1:n:2].
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FFT : algorithme

VNDFT(f)[K] = \f (DFT(Fpair)[] + € F*DFT(fimpain) K] ~ (2)
Le probléme est alors de :

1. Calculer la DFT des indices pairs de f.
2. Calculer la DFT des indices impairs de f.

3. Combiner en O(N) les deux suivant la formule ci-dessus.
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Complexitée

Le calcul de complexité de la FFT (Fast Fourier Transform) est analogue
a celle du tri fusion :

- calcul sur les tableau de taille N/2
- relation de récurrence C(N) = N +2 = C(%)
- complexité en O(Nlog(N))
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Implémentation

VN DFT(f)[K] = \/7(DFT(]EO2N o)k + e T *DFT(fron- 1)[’?])

Relation de récurrence :

1. Calculer la DFT des indices pairs de f.
2. Calculer la DFT des indices impairs de f.

3. Combiner en O(N) les deux suivant la formule ci-dessus.
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Implémentation

2im

VN DFT(f)[k] = f(DFT(fOZN 2)IK+ e~ FEDFT(fiom-1)[K])

Les sous DFT sont de longueur N/2, donc définies pour 0<k<N/2. En
remarquant que :

exp (_Ifl_/2j(k)+ N/2)) =exp (—N—/zjl?)

exp(—W(k’-l- N/2)) - exp(—ZI—nk’)

on s'apercoit qu'il y a périodicité de la DFT :

N
DFT paire | R+ o)

= DFTpaire[k]r

N
DFTimpaire R+ 5

= DFTimpaire[k] .
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Implémentation

VN DFT(f)[k] = f(DFT(fOZN 2)IK+ e~ FEDFT(fiom-1)[K])

1. Calculer la DFT des indices pairs de f.

2. Calculer la DFT des indices impairs de f.
3. Combiner en O(N) les deux suivant la formule ci-dessus.
- Copier f dans un tableau temporaire buffer. On a dans les indices
pairs et impairs les résultats des sous-DFT (non normalisées).
- Bouclede k=0a N/2-1:

flR] — buffer[2 « k] + e~ Tk buffer[2 « k+1]
flR+N/2] — buffer[2 « K] — e~ R buffer[2 « k+1].
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En pratique

- Le facteur t, = e~k est appelé twiddle. On en fait un calcul rapide
par la relation de récurrence de suite ggomeétrique tp,q = rty, dont

2in

la raison r=e~~ est pré-calculée.

- On alloue une seule fois buffer et on le passe dans les
arguments de la fonction récursive.
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Dérivation

Il est possible de définir un équivalent de dérivation pour la DFT.
Soit ej(x) = \reXP(ZII\/n/X) Pour ke N : ej(R) = ¢j[R]

Soit f la fonction périodique :

- ¥ DFT(7)lle; ()
J
et f(k) =flF]
- ¥ DFT D) = ¥ 2 oFT(f)les 0.
J J
Puis :
oFT(r) 11 = 2 oFT(n))
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Dérivation

Pour les fonctions réelles : il faut que f soit réelle.

22 DFT()[j] pour 0<j<N/2
DFT(f)D]: 0 pourj:N/z
2 (i NYDFT(A[j] pour N/2<j<N

Cette relation est utile pour résoudre certaines équations aux dérivées
partielles. En particulier, 'équation de Poisson que nous allons
resoudre en TP.
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Plan de la séance

Codons!
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TP long : transformée de Fourier rapide et éditeur de Poisson.

Idéee

Comment copier/coller un morceau d'image dans une autre? Pour
que les transitions soient naturelles, il faut que les variations
d’intensité au niveau de la frontiére soient égales : c'est 'équation de
Poisson.

Cette équation est simple a résoudre dans l'espace de Fourier. Il suffit
ensuite de récuperer 'image lissée en appliquant la transformée de
Fourier inverse.
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