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Les tris

Il existe de nombreux algorithmes de tris :

• en complexité quadratique O(n2) (tri à bulles, tri par insertion, tri
par sélection…)

• en complexité linéarithmique en moyenne O(n · log(n)) (tri rapide)
• en complexité linéarithmique dans le pire cas O(n · log(n)) (tri par
tas, tri fusion)

Complexité minimale des tris
Dans le cas général, un algorithme de tri est au moins O(n · log(n)).

En pratique
En pratique, on utilise le tri rapide (QuickSort) car il offre les meilleurs
performances et on utilise une contre-mesure pour éviter de se
trouver dans le pire cas.
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Divide and Conquer

Diviser pour régner

Principe
Diviser un problème en sous-problèmes plus petits, plus faciles à
résoudre.
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Rappel – principe du tri rapide

3 5 15 9 11 2 13 16 7 4 106112 14 8

3 5 159 112 13 1674 1061 12 148

3 5 159 112 13 1674 1061 12 148

3 5 274 61 159 1113 16 1012 14
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QuickSort : complexité

Le parcours du tableau implique N−1 comparaison. Puis on réitère
l’opération sur chaque moitié de tableau.

En notant i la position du pivot, la complexité s’écrit :

Cmoy(N)=N−1+E[Cmoy(i−1)+Cmoy(N− i)] ,

car le tri du tableau de longueur N implique :

• N - 1 comparaisons pour placer le pivot,
• le tri d’un tableau de longueur i−1 (à gauche du pivot),
• le tri d’un tableau de longueur N− i (à droite du pivot).
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QuickSort : complexité

Le pivot peut se retrouver à n’importe quelle position de façon
équiprobable :

E[Cmoy(i−1)+Cmoy(N− i)]= 1
N

N∑
p=1

[Cmoy(p−1)+Cmoy(N−p)]

puis, en réinjectant dans la complexité moyenne :

Cmoy(N)=N−1+ 1
N

N∑
p=1

[Cmoy(p−1)+Cmoy(N−p)] .
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QuickSort : complexité

Cmoy(N)=N−1+ 1
N

N∑
p=1
Cmoy(p−1)+ 1

N
N∑
p=1
Cmoy(N−p) .

Un changement de variable q=N−p dans la seconde somme donne :

Cmoy(N)=N−1+ 1
N

N∑
p=1

Cmoy(p−1)+ 1
N

N∑
q=1

Cmoy(q−1)

Autrement dit, la complexité se réécrit :

Cmoy(N)=N−1+ 2
N

N∑
p=1

Cmoy(p−1)
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QuickSort : complexité

En multipliant par N des deux côtés :

NCmoy(N)=N(N−1)+2
N∑
p=1

Cmoy(p−1) (a)

En outre, pour un tableau de taille N−1, la relation (a) se réécrit :

(N−1)Cmoy(N−1)= (N−1).(N−2)+2
N−1∑
p=1

Cmoy(p−1) . (b)

En calculant (a)− (b), il vient :

NCmoy(N)− (N−1)Cmoy(N−1)= 2N+2Cmoy(N−1) .
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QuickSort : complexité

En simplifiant :

NCmoy(N)= 2N+ (N+1)Cmoy(N−1) .

On divise par N(N+1) :
Cmoy(N)
N+1 = 2

N+1 +
Cmoy(N−1)

N

Puis par récurrence :

Cmoy(N)
N+1 =

N+1∑
k=3

2
k + Cmoy(1)2
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QuickSort : complexité

Comme :
N∑
k=1

1
k ∼
N→∞

log(N)

en remplaçant dans la complexité moyenne, on obtient l’équivalence

Cmoy(N) ∼
N→∞

(N+1)log(N)+ (N+1)Cmoy(1)2
Finalement :

Cmoy(N)=O(N log(N))
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Tri fusion

Le principe du tri fusion est proche du tri rapide. L’idée est de couper
un tableau en deux, de trier chaque moitié du tableau, puis de remplir
un nouveau tableau avec les sous-tableaux triés.
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Tri fusion

1 23 45 67 89 10

1 23 45 67 89 10

1 23 45 67 89 10

1 2 3 4 5 6 7 8 9 10

13/37



Calcul de la complexité

Le parcours du tableau implique N−1 comparaison. Donc :
CN = (N−1)+Ci+CN−i−1

En moyenne, i' N
2 :

CN =N+2 ·CN
2

Au rang suivant :
CN = 2N+4 ·CN

4

Puis :
CN = kN+2k ·C N

2k

La récurrence se termine après k= log2(N) étapes, donc :
CN =N logN+NC1 =O(N logN)
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Tri fusion

Le tri fusion est un O(N log(N)) dans tous les cas. Cependant il est en
moyenne plus lent que Quicksort, c’est pourquoi ce dernier est le plus
utilisé.
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Transformée de Fourier discrète

La transformée de Fourier discrète (Discrete Fourier Transform ou DFT)
est un algorithme central en traitement du signal et des images.
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Transformée de Fourier discrète

La transformée de Fourier discrète (Discrete Fourier Transform ou DFT)
est un algorithme central en traitement du signal et des images.

Digression spectrogramme

18/37

https://jhauret.github.io/presentation/presentation-LIUM/LIUM_November_10.html#/4/1/1


DFT : construction (1/2)

Soit l’espace complexe CN et la forme hermitienne :

〈f,g〉 =
N−1∑
j=0
f[k]g[k].

La famille des vecteur ek :

ek =
1p
N

(
e 2iπ

N 0·k, e 2iπ
N 1·k, . . . , e 2iπ

N (N−1)·k
)

pour k= 0, . . . ,N−1 est une famille libre orthonormale (donc une base).
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DFT : construction (2/2)

Soit f un tableau de N nombres complexes. Comme (e0,e1, . . . ,eN−1) est
une base, f se décompose de la façon suivante :

f=
N−1∑
j=0

〈f,ej〉ej

Les coefficients de la transformée de Fourier discrète de f sont les
coordonnées de f dans cette nouvelle base.
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Calcul de la DFT

Expression
La transformée de Fourier discrète transforme un tableau f de N
nombres complexes en un tableau DFT(f) de même taille par
l’opération suivante :

DFT(f)[k]= 〈f,ej〉 =
1p
N

N−1∑
j=0
f[j]e−

2iπ
N jk.

Interprétation physique
Le coefficient DFT(f)[k] représente l’énergie du signal f à la fréquence
k.
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DFT : transformée inverse

Soit f un tableau de N nombres complexes. Comme (e0,e1, . . . ,eN−1) est
une base :

f=
N−1∑
j=0

〈f,ej〉ej

ou encore :

f=
N−1∑
j=0
DFT(f)[j]ej
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DFT : transformée inverse

f=
N−1∑
j=0
DFT(f)[j]ej

f[k]=
(
N−1∑
j=0
DFT(f)[j]ej

)
[k]

f[k]= 1p
N

N−1∑
j=0
DFT(f)[j]e+

2iπ
N jk

Notant IDFT la transformée inverse (IDFT◦DFT= Id) :

f[k]= IDFT(DFT(f))[k]= 1p
N

N−1∑
j=0
DFT(f)[j]e+

2iπ
N jk
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DFT

Pour résumer, f un tableau de N nombres complexes :

Discrete Fourier Transform

DFT(f)[k]= 1p
N

N−1∑
j=0
f[j]e−

2iπ
N jk.

Inverse Discrete Fourier Transform

IDFT(g)[k]= 1p
N

N−1∑
j=0
g[j]e+

2iπ
N jk.
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Pourquoi?

Motivation
La transformée de Fourier transformes les convolutions (= opérations
de filtrage) en multiplication. Il est bien plus rapide de faire une
multiplication dans l’espace de Fourier qu’une convolution dans
l’espace initial.
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DFT : complexité a priori

DFT(f)[k]= 1p
N

N−1∑
j=0
f[j]e−

2iπ
N jk.

Calculer un terme : O(N).

Calculer tous les termes : O(N2)
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Fast Fourier Transform

La FFT est un algorithme introduit par Cooley and Tukey en 1965. Elle
permet de calculer la DFT en temps N log(N).

Elle utilise une approche diviser pour régner.
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FFT : algorithme

On sépare la somme dans la DFT en indices pairs et impairs :

p
N DFT(f)[k]=

N/2−1∑
j=0

f[2j]e−
2iπ
N (2j)k+

N/2−1∑
j=0

f[2j+1]e− 2iπ
N (2j+1)k,

dont on déduit facilement

p
N DFT(f)[k]=

N/2−1∑
j=0

f[2j]e−
2iπ
N/2 jk+e− 2iπ

N k
N/2−1∑
j=0

f[2j+1]e− 2iπ
N/2 jk.
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FFT : algorithme

On retrouve en fait le calcul de la transformée de Fourier discrète sur
les deux sous-tableaux :

p
NDFT(f)[k]=

√
N
2

(
DFT(fpair)[k]+e−

2iπ
N kDFT(fimpair)[k]

)
(1)

• fpair est le sous-tableau des indices pairs de f : f[0:n:2] ;
• fimpair est celui des indices impairs : f[1:n:2] .
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FFT : algorithme

p
NDFT(f)[k]=

√
N
2

(
DFT(fpair)[k]+e−

2iπ
N kDFT(fimpair)[k]

)
(2)

Le problème est alors de :

1. Calculer la DFT des indices pairs de f.
2. Calculer la DFT des indices impairs de f.
3. Combiner en O(N) les deux suivant la formule ci-dessus.
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Complexité

Le calcul de complexité de la FFT (Fast Fourier Transform) est analogue
à celle du tri fusion :

• calcul sur les tableau de taille N/2
• relation de récurrence C(N)≈N+2∗C(N2 )
• complexité en O(N log(N))
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Implémentation

p
N DFT(f)[k]=

√
N
2

(
DFT(f0:2:N−2)[k]+e−

2iπ
N kDFT(f1:2:N−1)[k]

)
Relation de récurrence :

1. Calculer la DFT des indices pairs de f.
2. Calculer la DFT des indices impairs de f.
3. Combiner en O(N) les deux suivant la formule ci-dessus.
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Implémentation

p
N DFT(f)[k]=

√
N
2

(
DFT(f0:2:N−2)[k]+e−

2iπ
N kDFT(f1:2:N−1)[k]

)
Les sous DFT sont de longueur N/2, donc définies pour 0≤ k≤N/2. En
remarquant que :

exp

(
− 2iπN/2 j(k+N/2)

)
= exp

(
− 2iπN/2 jk

)
exp

(
−2iπN (k+N/2)

)
= exp

(
−2iπN k

)
on s’aperçoit qu’il y a périodicité de la DFT :

DFTpaire
[
k+ N2

]
=DFTpaire[k],

DFTimpaire
[
k+ N2

]
=DFTimpaire[k] .
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Implémentation

p
N DFT(f)[k]=

√
N
2

(
DFT(f0:2:N−2)[k]+e−

2iπ
N kDFT(f1:2:N−1)[k]

)

1. Calculer la DFT des indices pairs de f.
2. Calculer la DFT des indices impairs de f.
3. Combiner en O(N) les deux suivant la formule ci-dessus.

• Copier f dans un tableau temporaire buffer. On a dans les indices
pairs et impairs les résultats des sous-DFT (non normalisées).

• Boucle de k= 0 à N/2−1 :

f[k]←buffer[2∗k]+e− 2iπ
N kbuffer[2∗k+1]

f[k+N/2]←buffer[2∗k]−e− 2iπ
N kbuffer[2∗k+1].
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En pratique

• Le facteur tk = e−
2iπ
N k est appelé twiddle. On en fait un calcul rapide

par la relation de récurrence de suite géométrique tk+1 = rtk, dont
la raison r= e− 2iπ

N est pré-calculée.
• On alloue une seule fois buffer et on le passe dans les
arguments de la fonction récursive.
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Dérivation

Il est possible de définir un équivalent de dérivation pour la DFT.

Soit ej(x)= 1p
N exp(

2iπ
N jx). Pour k ∈N : ej(k)= ej[k]

Soit f la fonction périodique :

f(x)=∑
j
DFT(f)[j]ej(x),

et f(k)= f[k] :

f′(x)=∑
j
DFT(f)[j]e′j(x)=

∑
j

2iπj
N DFT(f)[j]ej(x).

Puis :
DFT(f′)[j]= 2iπjN DFT(f)[j].

34/37



Dérivation

Pour les fonctions réelles : il faut que f′ soit réelle.

DFT(f′)[j]=


2iπ
N jDFT(f)[j] pour 0≤ j<N/2
0 pour j=N/2
2iπ
N (j−N)DFT(f)[j] pour N/2< j<N

Cette relation est utile pour résoudre certaines équations aux dérivées
partielles. En particulier, l’équation de Poisson que nous allons
résoudre en TP.
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Codons !

TP long : transformée de Fourier rapide et éditeur de Poisson.

Idée
Comment copier/coller un morceau d’image dans une autre ? Pour
que les transitions soient naturelles, il faut que les variations
d’intensité au niveau de la frontière soient égales : c’est l’équation de
Poisson.

Cette équation est simple à résoudre dans l’espace de Fourier. Il suffit
ensuite de récupèrer l’image lissée en appliquant la transformée de
Fourier inverse.
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