Algorithmique et structures de donnees

File de priorité - Fast marching

Julien Hauret
Lundi 20 février 2022



Plan de la séance

File de priorité et tri par tas

114



File de priorité

L'objectif est de créer une file dont les éléments sont retirés en
fonction de la priorité (un score) qui leur est attribué.

Il s'agit donc de maintenir une file triée (par ordre de priorité) lors de
l'ajout ou de la suppression d'un élément.

Compromis

- Acceder en O(1), implique une insertion en O(N)

- Insérer en O(1), implique un acces en O(N)

214



File de priorité : solution

On fait le choix d'une insertion et d'un accés en O(logN). On utilise
pour ce faire une structure d'arbre binaire équilibré, i.e. un arbre dans
lequel chaque noeud possede au plus 2 fils. On construit l'arbre de
sorte que chaque parent a une priorité supérieure a celle de ses fils.

3/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur a
la leur.

414



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur a
la leur.

9

414



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur a
la leur.

9

414



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur a
la leur.

414



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur a
la leur.

414



File de priorité : retrait (pop)

La racine de l'arbre est retirée. L'élément le plus profond est placé a la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. L'élément le plus profond est placé a la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. L'élément le plus profond est placé a la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

10—

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. L'élément le plus profond est placé a la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. Leléement le plus profond est placé a la
racine puis échangeé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. Leléement le plus profond est placé a la
racine puis échangeé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



File de priorité : retrait (pop)

La racine de l'arbre est retirée. Léléement le plus profond est placé a la
racine puis échangeé avec son fils de priorité maximale si celle-ci est
supérieure a la sienne.

5/14



La file de priorité est stockée dans un tableau, construit de la facon
suivante :

En commencant a l'indice 1, les fils du nceud i sont placés aux indices 2i

et2i+1.
A 01 2 3 45 6 7 8 9
Q QXQI

© 0 0 0

6/14



La file de priorité est stockée dans un tableau, construit de la facon
suivante :

En commencant a l'indice 1, les fils du nceud i sont placés aux indices 2i

et2i+1.
A 01 2 3 45 6 7 8 9
/‘i th

© 0 0 0

6/14



La file de priorité est stockée dans un tableau, construit de la facon
suivante :

En commencant a l'indice 1, les fils du nceud i sont placés aux indices 2i

et2i+1.
k 01 2 3 45 6 7 8 9
A~

6/14



La file de priorite est stockée dans un tableau, construit de la facon

suivante :

En commencant a l'indice 1, les fils du nceud i sont placés aux indices 2i
et2i+1.

6/14



Plan de la séance

Tri par tas

714



HeapSort

HeapSort remplit une file de priorité et puis retire les éléments un par
un.

void HeapSort(std::vector<double> &v){
FilePriorite f;
for(int i=0; i<v.size(); i++){
f.push(v[il);
}
for(int i=0; i<v.size(); i++){
v[i] = f.pop();
}
}

8/14



Conclusion

HeapSort est un tri en O(NlogN) dans tous les cas. Cependant en
comparaison a QuickSort, il utilise plus de mémoire et est plus long en
moyenne.

En pratique, QuickSort est le tri le plus utilise.

9/14



Complexités a retenir

- Tri : O(NlogN)
- Recherche dans un tableau trié : O(logN)

- Recherche dans un tableau non trie : O(N)

10/14



Plan de la séance

TP

/14



TP : fast marching

TP
Deux parties :

- Implémentation d’'une file de priorité

- Application au fast marching

12/14



Fast marching

Calcul rapide de cartes de distances

13/14



Fast marching

Calcul de plus court chemin

1414



	File de priorité et tri par tas
	Tri par tas
	TP

