
Algorithmique et structures de données
File de priorité - Fast marching

Julien Hauret
Lundi 20 février 2022



Plan de la séance

File de priorité et tri par tas

Tri par tas

TP

1/14



File de priorité

L’objectif est de créer une file dont les éléments sont retirés en
fonction de la priorité (un score) qui leur est attribué.

Il s’agit donc de maintenir une file triée (par ordre de priorité) lors de
l’ajout ou de la suppression d’un élément.

Compromis

• Accéder en O(1), implique une insertion en O(N)
• Insérer en O(1), implique un accès en O(N)

2/14



File de priorité : solution

Solution
On fait le choix d’une insertion et d’un accès en O(logN). On utilise
pour ce faire une structure d’arbre binaire équilibré, i.e. un arbre dans
lequel chaque noeud possède au plus 2 fils. On construit l’arbre de
sorte que chaque parent a une priorité supérieure à celle de ses fils.

3/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur à
la leur.

10

7 8

5 3 7

9

4/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur à
la leur.

10

7 8

5 3 7

9

4/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur à
la leur.

10

7 8

5 3 7

9

4/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur à
la leur.

10

7 8

5 3 7

9

9

4/14



File de priorité : insertion (push)

Le nouvel élément est inséré dans le sous-arbre de profondeur
minimale, puis échangé avec ses parents si sa priorité est supérieur à
la leur.

10

7

85 3 7

9

9

4/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

10

7

35 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

10

7

35 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

10

7

35 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

7

35 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

7

3

5 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

7
3

5 3 4

6

5/14



File de priorité : retrait (pop)

La racine de l’arbre est retirée. L’élément le plus profond est placé à la
racine puis échangé avec son fils de priorité maximale si celle-ci est
supérieure à la sienne.

7

3

5

3 4

6

5/14



Stockage

La file de priorité est stockée dans un tableau, construit de la façon
suivante :

En commençant à l’indice 1, les fils du nœud i sont placés aux indices 2i
et 2i+1.

9

6 4

3 1 2 1

0 1 2 3 4 5 6 7 8 9

9

6/14



Stockage

La file de priorité est stockée dans un tableau, construit de la façon
suivante :

En commençant à l’indice 1, les fils du nœud i sont placés aux indices 2i
et 2i+1.

9

6 4

3 1 2 1

0 1 2 3 4 5 6 7 8 9

9 6 4

6/14



Stockage

La file de priorité est stockée dans un tableau, construit de la façon
suivante :

En commençant à l’indice 1, les fils du nœud i sont placés aux indices 2i
et 2i+1.

9

6 4

3 1 2 1

0 1 2 3 4 5 6 7 8 9

9 6 4 3 1 1

6/14



Stockage

La file de priorité est stockée dans un tableau, construit de la façon
suivante :

En commençant à l’indice 1, les fils du nœud i sont placés aux indices 2i
et 2i+1.

9

6 4

3 1 2 1

0 1 2 3 4 5 6 7 8 9

9 6 4 3 1 2 1

6/14



Plan de la séance

File de priorité et tri par tas

Tri par tas

TP

7/14



HeapSort

HeapSort remplit une file de priorité et puis retire les éléments un par
un.

void HeapSort(std::vector<double> &v){
FilePriorite f;
for(int i=0; i<v.size(); i++){

f.push(v[i]);
}
for(int i=0; i<v.size(); i++){

v[i] = f.pop();
}

}

8/14



Conclusion

HeapSort est un tri en O(N logN) dans tous les cas. Cependant en
comparaison à QuickSort, il utilise plus de mémoire et est plus long en
moyenne.

En pratique, QuickSort est le tri le plus utilisé.

9/14



Complexités à retenir

• Tri : O(N logN)
• Recherche dans un tableau trié : O(logN)
• Recherche dans un tableau non trié : O(N)

10/14



Plan de la séance

File de priorité et tri par tas

Tri par tas

TP

11/14



TP : fast marching

TP
Deux parties :

• Implémentation d’une file de priorité
• Application au fast marching

12/14



Fast marching

Calcul rapide de cartes de distances

13/14



Fast marching

Calcul de plus court chemin

14/14


	File de priorité et tri par tas
	Tri par tas
	TP

